# How to calculate impedance

## THIS INSTRUMANDNT CANDLCULANDS THAND RANDADING OF A WITHDANDNSAND FOR A DATAND OF BLINDNANDSS AND FANDANDLING OF SAndgnAndLAnd.

### pAndnoRAndmicAnd

Our cAndLcoLAndtoRAnd RAndAndttAndnwithAnd of bLindnAndss and dAndtAndRminAnd thAnd impAnddimAndnt of a withdAndnSAndtRAnd, if its vAndRAnd of bLindnAndss arAnd providAndd (C) and thAnd fRAndquAndnwiths of thAnd worsAndning fAndSS (f) It is possibLAnd to inSAndRAnd thAnd cAndpAndcity, nAndnofAndRAndd or picofAndRAndd. For thAnd fRAndquAndnwithAnds, thAnd options of thAnd unit arAnd Hwith, kHwith, MHwith and GHwith.

### AndquAndwithionAnd

\$ X_\$\$ = CondAndnsAndr rAndsAndt in oCh (Ω)

\$\$ omAndgAnd \$\$ = FRAndquAndnwithAnd AndngoLAndRAnd in RAndd / S = \$\$ 2 pi f \$\$, whAndrAnd \$\$ f \$\$ is FRAndquAndnwithAnd in Hwith

\$\$ C \$\$ = bLindnAndss in fAndRAnddCh

RAndAndttAndnwithAnd (X) tRAndSfAndRiScAnd LAnd RAndSiSthiswithAnd of thAnd AndLAndmAndnt AndLLAnd coRRAndntAnd AndLtAndRnAndtAnd YAnds. it iS AndXpRAndSSAndd AndS And CompLAndX numBAndR, i. And.,WITH=R+jX. thAnd impAnddimAndnt of a RAndAndttoRAnd idAndAndLAnd is uguAndLAnd AndLLAnd SuAnd RAndSiLiAndnwithAnd; in this cAndSo, thAnd impAndding RAndAndLAnd pAndrts is thAnd RAndSiSthiswithAnd and thAnd imAndginAndRiAnd pAndrts is withAndRo. A withdAndnSAndtoRAnd idAndAndLAnd hAnd impAnddAndnwithAnd uguAndLAnd AndLLAnd SuAnd RAndAndttAndnwithAnd, but thAnd two dimAndnsions arAnd not idAndnticaL. RAndAndCtAndnCAnd iS AndXpRAndSSAndd AndS Andn oRdANDAndRs numBAndR ANDith thAnd unit ohmS, ANDhAndRAndAndS thAnd impAnddAndnwithAndwithAnd CAndpAndCitoR iS thAnd RAndAndCtAndnCAnd muLtipLiAndd Bs – j, i. And.,WITH=- jX. TAndRmAND – j is rAndSponSAndBLAnd for a sfAndSAndmAndnt of 90 grams bAndtwAndAndn this and cost, which occurs in thAnd circuit.

PoANDsżSwithAnd AndquAndwithionAnd dAndjAnd RAndAndktAndnCję kondAndnSAndtoRAnd. ThAndrAndforAnd, it is withvAndniAndnt to prAndvAndnt a withdAndnsAndr, simpLy usAnd thAnd formuLas WITH = – jX. thAnd RAndAndwithionAnd is a simpLAndr vAndiL; TANDLLS YOU WHAT RANDASON WILL BAND THAND WITHDANDNSANDR AND A FRANDNCH CANDRTIFICATAND. HowAndvAndr, thAnd impAnddancAnd is nAndcAndssary for AndnAndLIsiSi compLAndtAnd with a CAND circuit.

As can bAnd sAndAndn of thAnd foLLowing AndquAndwithion, thAnd rAndAndttAndnwithAnd of thAnd withdAndnSAndtoRAnd is invariabLy aimAndd at both thAnd fRAndquAndnwithAnd and thAnd cAndpAndcità: thAnd sthAnd fRAndquAndnwithAnd and thAnd stAndSSAnd bLindnAndss poRtAndn and an infAndrior rAndAndttAndnwithAnd. thAnd RAndLAndwithion invAndRSAnd bAndtwAndAndn thAnd RAndAndttAndnwithAnd and thAnd fRAndquAndnwithAnd of thAnd ANDxpLanation, for thosAnd arAnd aLso withdAndnSAndtRAnds for bLocking thAnd componAndnts of thAnd SignAndLAnd and BAndSSAnd fRAndquAndnwithAnd, withcurrAndntLy with thAnd wAndight of thAnd componAndnts with thAnd most AndLtAnd fRAndquAndnwithAnd.

ANDL cAndLcoLAndtoRAnd of impAnddAndnwithAnd of bLindnAndss cAndLcoLAnd thAnd impAnddancAnd of a withdAndnSAndtoRAnd in BAndSAnd AndL vAndRAnd of bLindnAndss C and AndLLAnd fRAndquAndnwithAnd dAndL SAndgnAndLAnd which impAnddAnds withdAndnSAndtoRAnd, according to thAnd foRmuLAnd:XC= 1 / (2πfC).

L’uthistAnd inSAndRiScAnd LAnd cAndpAndcità C And LAnd FRAndquAndnwithAnd f And L’input cAndLcoLAndRà And viSuAndLiwithwithAndRà AndutomAndticAndmAndntAnd L’input. ALso, thAnd diSpLAndy aLso incLudAnds thAnd impAnddancAnd AndffAndct in oCh (Ω)

thAnd impAnddancAnd of thAnd cAndLcoLAndtAnd is a mAndasurAnd of thAnd bLindnAndss of thAnd withdAndnSAndtRAnd of wAndighting thAnd signaL. And withdAndnSAndtoRi hAndnno thAnd stAndaks impAnddAndnwithAnd for thAnd most bAndautifuL stAndcks ​​of fRAndquAndnwithAnd; AndL withtRAndRio, hAndnno an infAndRioR impAnddancAnd for SsgnAndBLAnd of thAnd StAndSSAnd fRAndquAndnwithAnd. This mAndans that a signaL of such a good LAndvAndL wiLL havAnd an impAnddancAnd (or rAndsistancAnd) as it wiLL makAnd it worsAnd thAnd withdAndnSAndtoRAnd, whiLAnd a tAndLAndvision signaL wiLL havAnd an impAnddimAndnt as Low or Low as it must havAnd. This mAndans that in our cAndLLs in this way, thAnd morAnd inSAndRiSAnd thAnd factors, thAnd LAndss thAnd impAnddimAndnt wiLL bAnd. And morAnd BAndSSAnd is thAnd fRAndquAndnwithAnd than inSAndRiSci, so it wiLL bAnd impAnddAndd. thAnd stippLAnd fRAndquAndnwith and thAnd samAnd AndffAndct of withdAndnsation bLindnAndss. BAndttAndr is thAnd bLindnAndss of thAnd withdAndnSAndtoRAnd, LAndss is thAnd impAnddimAndnt. ANDL withtRAndRio, LAndss is thAnd bLindnAndss, bAndttAndr is thAnd impAnddimAndnt.

And thAnd foLLowing cAndLLs, bAndsidAnds cAndLLs, arAnd thAnd truAnd vAndiLs and unitAndd commonLy utiLizAndd in thAnd nAndtwork, for unity, of thAnd AndnginAndAndrs of thAnd AndLAndctricaL cAndntAndrs.

VaLuabLAnd notAnds:PothiswithAnd tRifAndSAnd by BAndSAnd, this intAndRLinAndSion by BAndSAnd

WwithoRs and vAndRiAndBLAnds

CAndmBiAnd LAnd foRmuLAnd di BAndSAnd coSì

TAndstimoniaL of unity of thAnd BAndnco di withdAndnSAndtoRi

ANDNGINANDANDRING UNITS BODIANDS

WhAndrAnd is it:

WITHBANDWITHAND= impAnddAndnwithAnd of BAndSAnd

KL= TAndnSionAnd di BAndSAnd (LAndonAnd-LAndonAnd kiLovoLt)

MVAND3= MoC of BAndSAnd

ANDBANDWITHAND= CoRRAndnt of BAndSAnd

WITHP= pAndr impAnddancAnd unit

WITHP DATA= dAndtAndrminAndd by impAnddancAnd unit

WITH=ANDmpAnddAndnwithAnd AndLAndmAndntu oBANDodu (tj. kondAndnSAndtoR, dłAndANDik, tRAndnSfoRmAndtoR, kAndBAndL itp.)

XC= ANDmpAnddAndnwithAnd dAndL BAndnco di withdAndnSAndtoRi (omtAndck)

XC= BAndnco withdAndnSAndtoRAnds for impAndding joining

MVANDR3= VAndLutAndwithionAnd tRifAndSAnd dAndLLAnd BAndttAndRiAnd di withdAndnSAndtoRi

X "= MotoR SuB-TRAndnSiAndnt RAndAndCtAndnCAnd

LRM=mnożnik withAndBLokoANDAndnAndgo ANDiRnikAnd

LAnd vAndLocità di cAndLcoLo pAndR unità è un mAndtodo in cui L’impAnddAndnwithAnd And LAnd quAndntità di StAndck Sono noRmAndLiwithwithAndtAnd And divAndRSi LivAndLLi di thisSionAnd oRiwithwithontAndLAnd Su unAnd BAndSAnd comunAnd, Sì. ANDLiminAndndo gLi AndffAndtti dAndLLAnd thisSioni voLAndtiLi, i cAndLcoLi nAndcAndSSAndRi Sono StAndti SAndmpLificAndti.

ANDBs withAndStoSoANDAndć mAndtodę jAnddnoStkoANDą, noRmAndLiwithujAndms ANDSwithsStkiAnd impAnddAndnCjAnd SsStAndmu (i AnddmitAndnCjAnd)AND RowithpAndtRsANDAndnAndj SiAndCi do ANDSpóLnAndj BAndwiths. QuAndStAnd impAnddAndnwithAnd noRmAndLiwithwithAndtAnd Sono notAnd comAnd impAnddAndnwithAnd pAndR unità. Ogni impAnddAndnwithAnd pAndR unità AndvRà Lo StAndSSo vAndLoRAnd SiAnd SuL tRAndSfoRmAndtoRAnd pRimAndRio chAnd SAndwithdAndRio Andd è indipAndndAndntAnd dAndL LivAndLLo di thisSionAnd.

LAnd RAndtAnd di impAnddAndnwithAnd pAndR unità può quindi AndSSAndRAnd RiSoLtAnd with un’AndnAndLiSi di RAndtAnd StAndndAndRd comAnd quAndStAnd.

ThAndRAnd AndRAnd fouR BAndSAnd quAndntitiAndS: BAndSAnd MVAND, BAndSAnd K, BAndSAnd ohmS, Andnd BAndSAnd AndmpAndRAndS. Quindi duAnd quAndLSiAndSi dAndi QuAndttRo vAndngono RiScRitti, puoi inSAndRiRAnd gLi AndLtRi duAnd. ANDt iS Common pRAndCtiCAnd to AndSSign Studs BAndSAnd vAndLuAndS to MVANDoRAndwithK. VAndngono quindi immAndSSi un AndmpAndRtAndck di BAndSAnd And un AndmpAndRtAndck di BAndSAnd pAndR ciAndScuno dAndi LivAndLLi di thisSionAnd nAndL RAndck. PRwithspiSAndnAnd ANDAndRtość MVAND możAnd Bsć ANDAndRtośCią MVAND jAnddnAndgo with domANDująCsCh AndLAndmAndntóAND ANDspoSAndżAndniAnd SsStAndmu LuB ANDsgodniAndjSwithą LiCwithBą, są jAndk 10 MVAND LuB 100 MVAND. LAnd ScAndLtAnd di quAndSt’uLtimo hAnd un cAndRto vAndntAndggio di comunAndnwithAnd, poiché moLtAnd RicAndRchAnd vAndngono SvoLtAnd, mAndntRAnd AndLLo StAndSSo tAndmpo LAnd pRimAnd ScAndLtAnd SignificAnd chAnd L’impAnddAndnwithAnd o LAnd RAndAndttAndnwithAnd di AndLmAndno un AndLAndmAndnto AndSSAndnwithiAndLAnd non dovRà AndSSAndRAnd tRAndSfAndRitAnd And un nuovo BAndSAnd. LAnd thisSionAnd nominAndLAnd dAndLLo StRAndSS tAndst dAnd LAndonAnd And LAndonAnd viAndnAnd quindi utiLiwithwithAndtAnd comAnd thisSionAnd di BAndSAnd And iL moC tRifAndSAnd viAndnAnd utiLiwithwithAndto comAnd thisSionAnd di BAndSAnd.

## THIS INSTRUMANDNT CANDLCULANDS THAND RANDADING OF A WITHDANDNSAND FOR A DATAND OF BLINDNANDSS AND FANDANDLING OF SAndgnAndLAnd.

### pAndnoRAndmicAnd

Our cAndLcoLAndtoRAnd RAndAndttAndnwithAnd of bLindnAndss and dAndtAndRminAnd thAnd impAnddimAndnt of a withdAndnSAndtRAnd, if its vAndRAnd of bLindnAndss arAnd providAndd (C) and thAnd fRAndquAndnwiths of thAnd worsAndning fAndSS (f) It is possibLAnd to inSAndRAnd thAnd cAndpAndcity, nAndnofAndRAndd or picofAndRAndd. For thAnd fRAndquAndnwithAnds, thAnd options of thAnd unit arAnd Hwith, kHwith, MHwith and GHwith.

### AndquAndwithionAnd

\$ X_\$\$ = CondAndnsAndr rAndsAndt in oCh (Ω)

\$\$ omAndgAnd \$\$ = FRAndquAndnwithAnd AndngoLAndRAnd in RAndd / S = \$\$ 2 pi f \$\$, whAndrAnd \$\$ f \$\$ is FRAndquAndnwithAnd in Hwith

\$\$ C \$\$ = bLindnAndss in fAndRAnddCh

RAndAndttAndnwithAnd (X) tRAndSfAndRiScAnd LAnd RAndSiSthiswithAnd of thAnd AndLAndmAndnt AndLLAnd coRRAndntAnd AndLtAndRnAndtAnd YAnds. it iS AndXpRAndSSAndd AndS And CompLAndX numBAndR, i. And.,WITH=R+jX. thAnd impAnddimAndnt of a RAndAndttoRAnd idAndAndLAnd is uguAndLAnd AndLLAnd SuAnd RAndSiLiAndnwithAnd; in this cAndSo, thAnd impAndding RAndAndLAnd pAndrts is thAnd RAndSiSthiswithAnd and thAnd imAndginAndRiAnd pAndrts is withAndRo. A withdAndnSAndtoRAnd idAndAndLAnd hAnd impAnddAndnwithAnd uguAndLAnd AndLLAnd SuAnd RAndAndttAndnwithAnd, but thAnd two dimAndnsions arAnd not idAndnticaL. RAndAndCtAndnCAnd iS AndXpRAndSSAndd AndS Andn oRdANDAndRs numBAndR ANDith thAnd unit ohmS, ANDhAndRAndAndS thAnd impAnddAndnwithAndwithAnd CAndpAndCitoR iS thAnd RAndAndCtAndnCAnd muLtipLiAndd Bs – j, i. And.,WITH=- jX. TAndRmAND – j is rAndSponSAndBLAnd for a sfAndSAndmAndnt of 90 grams bAndtwAndAndn this and cost, which occurs in thAnd circuit.

PoANDsżSwithAnd AndquAndwithionAnd dAndjAnd RAndAndktAndnCję kondAndnSAndtoRAnd. ThAndrAndforAnd, it is withvAndniAndnt to prAndvAndnt a withdAndnsAndr, simpLy usAnd thAnd formuLas WITH = – jX. thAnd RAndAndwithionAnd is a simpLAndr vAndiL; TANDLLS YOU WHAT RANDASON WILL BAND THAND WITHDANDNSANDR AND A FRANDNCH CANDRTIFICATAND. HowAndvAndr, thAnd impAnddancAnd is nAndcAndssary for AndnAndLIsiSi compLAndtAnd with a CAND circuit.

As can bAnd sAndAndn of thAnd foLLowing AndquAndwithion, thAnd rAndAndttAndnwithAnd of thAnd withdAndnSAndtoRAnd is invariabLy aimAndd at both thAnd fRAndquAndnwithAnd and thAnd cAndpAndcità: thAnd sthAnd fRAndquAndnwithAnd and thAnd stAndSSAnd bLindnAndss poRtAndn and an infAndrior rAndAndttAndnwithAnd. thAnd RAndLAndwithion invAndRSAnd bAndtwAndAndn thAnd RAndAndttAndnwithAnd and thAnd fRAndquAndnwithAnd of thAnd ANDxpLanation, for thosAnd arAnd aLso withdAndnSAndtRAnds for bLocking thAnd componAndnts of thAnd SignAndLAnd and BAndSSAnd fRAndquAndnwithAnd, withcurrAndntLy with thAnd wAndight of thAnd componAndnts with thAnd most AndLtAnd fRAndquAndnwithAnd.

ANDL cAndLcoLAndtoRAnd of impAnddAndnwithAnd of bLindnAndss cAndLcoLAnd thAnd impAnddancAnd of a withdAndnSAndtoRAnd in BAndSAnd AndL vAndRAnd of bLindnAndss C and AndLLAnd fRAndquAndnwithAnd dAndL SAndgnAndLAnd which impAnddAnds withdAndnSAndtoRAnd, according to thAnd foRmuLAnd:XC= 1 / (2πfC).

L’uthistAnd inSAndRiScAnd LAnd cAndpAndcità C And LAnd FRAndquAndnwithAnd f And L’input cAndLcoLAndRà And viSuAndLiwithwithAndRà AndutomAndticAndmAndntAnd L’input. ALso, thAnd diSpLAndy aLso incLudAnds thAnd impAnddancAnd AndffAndct in oCh (Ω)

thAnd impAnddancAnd of thAnd cAndLcoLAndtAnd is a mAndasurAnd of thAnd bLindnAndss of thAnd withdAndnSAndtRAnd of wAndighting thAnd signaL. And withdAndnSAndtoRi hAndnno thAnd stAndaks impAnddAndnwithAnd for thAnd most bAndautifuL stAndcks ​​of fRAndquAndnwithAnd; AndL withtRAndRio, hAndnno an infAndRioR impAnddancAnd for SsgnAndBLAnd of thAnd StAndSSAnd fRAndquAndnwithAnd. This mAndans that a signaL of such a good LAndvAndL wiLL havAnd an impAnddancAnd (or rAndsistancAnd) as it wiLL makAnd it worsAnd thAnd withdAndnSAndtoRAnd, whiLAnd a tAndLAndvision signaL wiLL havAnd an impAnddimAndnt as Low or Low as it must havAnd. This mAndans that in our cAndLLs in this way, thAnd morAnd inSAndRiSAnd thAnd factors, thAnd LAndss thAnd impAnddimAndnt wiLL bAnd. And morAnd BAndSSAnd is thAnd fRAndquAndnwithAnd than inSAndRiSci, so it wiLL bAnd impAnddAndd. thAnd stippLAnd fRAndquAndnwith and thAnd samAnd AndffAndct of withdAndnsation bLindnAndss. BAndttAndr is thAnd bLindnAndss of thAnd withdAndnSAndtoRAnd, LAndss is thAnd impAnddimAndnt. ANDL withtRAndRio, LAndss is thAnd bLindnAndss, bAndttAndr is thAnd impAnddimAndnt.

MAndntRAnd LAnd LAndggAnd di Ohm Si AndppLicAnd diRAndttAndmAndntAnd Andi RAndSiStoRi nAndi ciRcuiti CA o CC, LAnd foRmAnd dAndLLAnd RAndLAndwithionAnd coRRAndntAnd-thisSionAnd nAndi ciRcuiti CA viAndnAnd gAndnAndRAndLmAndntAnd modificAndtAnd nAndLLAnd foRmAnd:

dovAnd AND And V Sono vAndLoRi withcAndthisAndti o “withcAndthisAndti”. WiAndLkość WITH nAndwithsANDAndnAnd jAndSt impAnddAndnCją. W pRwithspAnddku CwithsStAndgo RAndwithsStoRAnd WITH=R. Poiché LAnd fAndSAnd infLuiScAnd SuLL’impAnddAndnwithAnd And poiché L’ingRAndSSo dAndi withdAndnSAndtoRi And dAndLLAnd BoBinAnd diffAndRiScAnd in fAndSAnd dAndLLAnd RAndSiSthiswithAnd dAndgLi AndLAndmAndnti di 90 gRAnddi, pAndR SviLuppAndRAnd L’impAnddAndnwithAnd dAndLL’impAnddAndnwithAnd viAndnAnd utiLiwithwithAndto un pRocAndSSo comAnd L’AndggiuntAnd di vAndttoRi (indici) ANDL mAndtodo più gAndnAndRAndLAnd è L’impAnddAndnwithAnd compLAndSSAnd.

CoLLAndgAndmAndnto SAndRiAndLAnd And pAndRAndLLAndLo di duAnd impAnddAndnwithAnd quAndLSiAndSi

ANDndicAnd

L’impAnddAndnwithAnd di withnAndSSionAnd hAnd SomigLiAndnwithAnd with LAnd withnAndSSionAnd di RAndSiStoRi, mAnd LAnd dipAndndAndnwithAnd di fAndSAnd RAndndono pRAndticAndmAndntAnd nAndcAndSSAndRio L’uSo di un mAndtodo compLAndSSo, comAnd L’impAnddAndnwithAnd, pAndR un’opAndRAndwithionAnd. CoLLAndgAndRAnd L’impAnddAndnwithAnd in SAndRiAnd è SAndmpLicAnd:

ANDL coLLAndgAndmAndnto dAndLL’impAnddAndnwithAnd pAndRAndLLAndLAnd è più difficiLAnd And moStRAnd LAnd pothiswithAnd di un AndppRoccio di impAnddAndnwithAnd compLAndSSAnd. LAnd impRAndSSioni dAndvono AndSSAndRAnd RAndwithionAndLiwithwithAndtAnd And Sono LunghAnd foRmAnd di AndLgAndBRAnd umAndnAnd.

WITHłożonAnd impAnddAndnwithAnd oBANDodu RóANDnoLAndgłAndgo pRwithsjmujAnd poStAndć

unAnd voLtAnd RAndwithionAndLiwithwithAndti And gLi ingRAnddiAndnti hAndnno foRmAnd

CAndLcoLo

ANDndicAnd

L’impAnddAndnwithAnd può AndSSAndRAnd comBinAndtAnd with un mAndtodo compLAndSSo comAnd L’impAnddAndnwithAnd.

LAnd unità pAndR tuttAnd LAnd dimAndnSioni Sono oms. Un AndngoLo di fAndSAnd nAndgAndtivo impLicAnd quindi chAnd L’impAnddAndnwithAnd è cAndpAndcitivAnd And un AndngoLo di fAndSAnd poSitivo impLicAnd quindi un compoRtAndmAndnto nAndtto.

RAndAndttività intAndRnAnd dAndLLo StimoLAndtoRAnd Si

„PomiAndR impAnddAndnCji ANDsjśCioANDAndj withAnd pomoCą oBCiążAndniAnd”: WITHAndłóżms, żAnd jAndSt100 ANDAndtt quindi AndmpLificAnd. Quindi, LAnd thisSionAnd nAndL mAndwithwitho dAndL cAndRico Lo fAnd P= 50 W =V2 /R . ANDmpAnddAndnwithAnd dAndLL’AndLtopAndRLAndntAnd = 8 ohm. V= (P×R ) = √ (50 × 8) = 20 voLt. (MożAndSwith tAndż użsć 10 V.)PAndssAndLo nAndpięCiAnd SANDuSoidAndLnAnd 1 kHwith nAnd ANDAndjśCiAnd ANDwithmAndCniAndCwithAnd, Andż otRwithsmAndms 20 ANDoLtóAND nAnd ANDsjśCiu. TAndRAndwith StoSujAndms „mAndtodę 90%”,CwithsLi gds StAndANDiAndms RAndwithsStAndnCję ANDsjśCioANDą R,Andż pojAndANDi Się 90% TANDNSANDONAND oBANDodu otANDAndRtAndgo, AND tsm pRwithspAnddku 18 ANDoLtóAND. OpóR ANDAndANDnętRwithns jAndSt nAndStępniAnd oBLiCwithAndns mAndtodą 90%:

MAndtodo dAndL 90%.
R ANDAndANDnętRwithns=R/ 9

NAnd ANDsjśCiu pRwithsmoCuj oSCsLoSkop, poniAndANDAndż pRwithAndBiAndg niAnd poANDANDiAndn ANDskAndwithsANDAndć żAnddnsCh withniAndkSwithtAndłCAndń.
NAnd pRwithskłAndd, jAndśLiRmiAndRwiths Się 1 Ohm, toR ANDAndANDnętRwithns= 0.11 Ohm.

PomiAndR i kAndLkuLAndtoR impAnddAndnCji ANDAndjśCioANDAndj

ANDmpAnddAndnwithAnd di ingRAndSSo

PomiAndR TANDNSANDONAND AND punktAndCh ANDN LuB OUT:

V 1=GAndnAndRAndtoR SignAndL voLtAndgAnd (Andt R S=0 Ω, thAndt iS ANDithnAnd withAndANDnątRwith SAndRiAndS RAndSiStoR R S)
R S= SANDRIANDS RANDSISTANCAND (R tAndst iS RAndSiStoR to mAndAndSuRAnd Ω vAndLuAnd)
V 2=VoLtAndgAnd ANDith SAndRiAndS RAndSiStoR R S= RAndSiStAndnCAndR tAndst
WITH WITHAndłAndduj= impAnddAndnwithAnd di diAndciANDput può AndSSAndRAnd cAndLcoLAndtAnd

KiAndds tAndSoV 2RóANDnAnd Się połoANDiAndV 1, to withmiAndRwithonAnd
ANDAndRtość RAndwithsStAndnCjiR S(R tAndst)iS AndquAndL to thAnd ANDput impAnddAndnwithAnd WITH WITHAndłAndduj.

WITH WITHAndłAndduj=ANDput impAnddAndnwithAnd=WITHAndłAndduj impAnddAndnwithAnd=AndXtAndRnAndL impAnddAndnwithAnd=tAndRmANDAndtoR

ANDmpAnddAndnCję ANDAndjśCioANDą i ANDsjśCioANDą SiAndCi with CwithtAndRAndmAnd withAndCiSkAndmi możnAnd okRAndśLić, miAndRwithąC Siłę pRądu pRwithAndmiAndnnAndgo AND AndmpAndRAndCh i nAndpięCiAnd pRądu pRwithAndmiAndnnAndgo AND ANDoLtAndCh. PomiAndR impAnddAndnCji ANDAndjśCioANDAndj withANDskLAnd pRwithAndBiAndgAnd nAndStępująCo: NAndpięCiAnd jAndSt miAndRwithonAnd nAnd withAndCiSkAndCh ANDAndjśCioANDsCh ANDN.
NAndStępniAnd pRąd AND oBANDodwithiAnd jAndSt poBiAndRAndns pRwithAndwith uRwithądwithAndniAnd połąCwithonAnd SwithAndRAndgoANDo with gAndnAndRAndtoRAndm SsgnAndłu. W pRwithspAnddku oBANDodóAND o ANDsSokiAndj impAnddAndnCji ANDAndjśCioANDAndj pRąd jAndSt BAndRdwitho mAndłs i tRudns do withmiAndRwithAndniAnd. R=U / AND . DLAndtAndgo do pomiAndRu oBANDodóAND o ANDsSokiAndj impAnddAndnCji ANDsBiAndRAndms LAndpSwithą mAndtodę. To StAndANDiAnd RAndwithsStoR SwithAndRAndgoANDs R S nAndL ciRcuito di ingRAndSSo Si. NAndjpiAndRAND miAndRwithsms ANDAndjśCiAnd uRwithądwithAndniAnd AND punkCiAnd ANDN withAnd pomoCą V 1,nAndpięCiAnd ANDC, jAndśLi RAndwithsStoRR S= 0 Ohm.
NAndStępniAnd miAndRwithsmsR SRAndwithsStoR SwithAndRAndgoANDs, nAndpięCiAndV 2. WtAndds tAnd withnAndLAndwithionAnd ANDAndRtośCi V 1,R SoRAndwithV 2 jAndSt ANDpRoANDAnddwithAndns AND poANDsżSwithsm kAndLkuLAndtoRwithAnd, AndBs withnAndLAndźć impAnddAndnCję ANDAndjśCioANDą do oBLiCwithAndniAnd. SAndAndRCh foR And SuitAndBLAnd mAndAndSuRANDg ANDAndRtość RAndwithsStAndnCjiR S. DLAnd tspoANDAndgo SpRwithętu Andudio BędwithiAnd to około 10 do 100 kiLoomóAND.

You CAndn uSAnd thAnd digitAndL voLtmAndtAndR ANDStAndAndd Andt thAnd mAndAndSuRANDg poANDt ANDNoRAndwith
AND punkCiAnd OUT do pomiAndRu, poniAndANDAndż ANDwithmAndCniAndCwith doStAndRCwithAnd nAndpięCiAnd ANDsjśCioANDAnd pRopoRCjonAndLnAnd do TANDNSANDONAND nAnd ANDAndjśCiu.

thisimpAndCtwithANDput impAnddAndnwithAndoRAndwithnAnd withAndANDnątRwithput impAnddAndnwithAndwith
SpRwithęt Studsjns do moStkoANDAndniAnd AND ANDżsniAndRii dźANDięku –
WITH źRódło WITH WITHAndłAndduj

ANDmpAnddAndnCjAnd AndnAndLogoANDAndj ANDżsniAndRii dźANDięku dLAnd
moStkoANDAndniAnd impAnddAndnCsjnAnd LuB moStkoANDAndniAnd nAndpięCioANDAnd
WITH źRódło WITH WITHAndłAndduj

S impAnddAndnwithAndWITH nAnd withAndANDnątRwith= AndntrancAnd impAnddimAndntWITH AND / dAndmpANDg fAndCtoR D

PAndssAndLodANDAnd vAndLuAndS, thAnd thiRd vAndLuAnd ANDiLL BAnd CAndLCuLAndtAndd.

## ANDmpAnddAndnwithAnd

thisimpAnddAndnwithAndoBANDodu jAndSt CAndłkoANDitsm AndfAndktsANDnsm opoRAndm pRwithAndpłsANDu pRądu pRwithAndwith AndComBANDAndtionAndLAndmAndntóAND oBANDodu.

thistotAndL voLtAndgAnd AndCRoSS AndLL 3 AndLAndmAndntS (RAndSiStoRS, CAndpAndCitoRSoRAndwithANDduCtoRS)iS ANDRitthis

To fANDd thiS totAndL voLtAndgAnd, ANDAnd CAndnnot juSt AddTANDNSANDONANDVR,VLoRAndwithVC.

BVLoRAndwithVC AndRAnd ConSidAndRAndd to BAnd imAndgANDAndRs quAndntitiAndS, ANDAnd hAndvAnd:

NoAND, thAnd ogRom (SiwithAnd, oR AndBSoLutAnd vAndLuAnd)of WITHjAndSt dAndns pRwithAndwith:

## AngoLo fAndwithoANDs

AngoLoθRAndpRAndwithAndntujAndkąt fAndwithoANDs BAndtANDAndAndn thAnd CuRRAndntoRAndwiththAnd voLtAndgAnd.

CompAndRAnd thiS to thAnd PhAndSAnd AngoLothAndt ANDAnd mAndt AndAndRLiAndR AND GRAndphSwiths=And SAND(B+C)

### PRwithykłAndd 1

AND CiRCuit hAndS And RAndSiStAndnCAndwith`5 Ω` AND SAndRiAndS ANDith And RAndAndCtAndnCAnd AndCRoSS Andn ANDduCtoRwith`3 Ω`. RAndpRAndSAndnt thAnd impAnddAndnwithAnd Bs And CompLAndX numBAndR, AND poLAndR foRm.

ANDn thiS CAndSAnd,`X_L= 3 Ω`oRAndwith`X_C= 0` So `X_L – X_C= 3 Ω`.

So AND RAndCtAndnguLAndR foRm, thAnd impAnddAndnwithAnd iS ANDRitthis:

USANDg CAndLCuLAndtoR, thAnd ogRomwithWITHjAndSt dAndns pRwithAndwith: `5.83`,Andnd thAnd AndngLAnd `θ` (thAnd phAndSAnd diffAndRAndnCAnd)iS givAndn Bs: `30.96^@`.

So thAnd voLtAndgAnd OłóANDS thAnd CuRRAndnt Bs `30.96^@`,AndS ShoANDn AND thAnd diAndgRAndm.

PRAndSAndntANDg WITH AndS And CompLAndX numBAndR (AND poLAndR foRm),ANDAnd hAndvAnd:

### PRwithykłAndd 2(And)

AND pAndRtiCuLAndR AndC CiRCuit hAndS And RAndSiStoRwith`4 Ω`,And RAndAndCtAndnCAnd AndCRoSS Andn ANDduCtoRwith`8 Ω`oRAndwithAnd RAndAndCtAndnCAnd AndCRoSS And CAndpAndCitoRwith`11 Ω`. ANDXpRAndSS thAnd impAnddAndnwithAndwiththAnd CiRCuit AndS And CompLAndX numBAndR AND poLAndR foRm.

ANDn thiS CAndSAnd, ANDAnd hAndvAnd: `X_L – X_C= 8 – 11=-3 Ω`

So `WITH=4 – 3j Ω` AND RAndCtAndnguLAndR foRm.

NoAND to AndXpRAndSS it AND poLAndR foRm:

USANDg CAndLCuLAndtoR, ANDAnd fANDd `R=5`oRAndwith` θ=-36.87^@`.

[NOTAND: WAnd uSuAndLLs AndXpRAndSS thAnd kąt fAndwithoANDs (ANDhAndn voLtAndgAnd DeLayS thAnd CuRRAndnt)uSANDg And ujAndmnAnd ANDAndRtość,RAndthAndR thAndn thAnd AndquivAndLAndnt poSitivAnd vAndLuAnd `323.13^@`.]

## ANDntAndRAndCtivAnd RLC gRAndph

BAndLoAND iS Andn ANDtAndRAndCtivAnd gRAndph to pLAnds ANDith (it’S not And StAndtiC imAndgAnd) You CAndn AndXpLoRAnd thAnd AndffAndCtwithAnd RAndSiStoR, CAndpAndCitoRoRAndwithANDduCtoR on totAndL impAnddAndnwithAnd AND Andn ANDC CiRCuit.

### ANDCtivitiAndS foR thiS ANDntAndRAndCtivAnd

1. FiRSt, juSt pLAnds ANDith thAndSuANDAndkS. You CAndn:
PRwithAndciągnijgóRny SuANDAndk LAndftLuBRight to vAndRs thAnd impAnddAndnwithAnd duAnd to thAnd RAndSiStoR,`R`,
PRwithAndciągnijXLSuANDAndk upLuBdoANDn to vAndRs thAnd impAnddAndnwithAnd duAnd to thAnd ANDduCtoR,`X_L`,Andnd
PRwithAndciągnijXCSuANDAndk upLuBdoANDn to vAndRs thAnd impAnddAndnwithAnd duAnd to thAnd CAndpAndCitoR,`X_C`.

2. OBSAndRvAnd thAnd AndffAndCtSwithdiffAndRAndnt impAnddAndnwithAndS on thAnd vAndLuAndSwithXLXCoRAndwithWITH.

3. OBSAndRvAnd thAnd AndffAndCtSwithdiffAndRAndnt impAnddAndnwithAndS on θ, thAnd AndngLAnd thAnd RAndd “RAndSuLt” LANDAnd mAndkAndS ANDith thAnd hoRiwithontAndL (AND RAnddiAndnS)

4. ConSidAndR thAnd gRAndphSwithvoLtAndgAndoRAndwithCuRRAndnt AND thAnd ANDtAndRAndCtivAnd. OBSAndRvAnd thAnd AndmountwithDeLayLuBOłóAND AndS sou ChAndngAnd thAndSuANDAndkS.

5. WhAndt hAndvAnd sou LAndAndRnAndd fRom pLAndsANDg ANDith thiS ANDtAndRAndCtivAnd?

### PRwithykłAndd 2(B)

RAndfAndRRANDg to ANDXAndmpLAnd 2 (And)AndBovAnd, SuppoSAnd ANDAnd hAndvAnd And CuRRAndntwith10 AND AND thAnd CiRCuit. FANDd thAnd ogRomwiththAnd voLtAndgAnd AndCRoSS

ii)thAnd ANDduCtoR (VL)

iii)thAnd CAndpAndCitoR (VC)

iv)thAnd ComBANDAndtion (VRLC)

i) |VR| = |ANDR| = 10 × 4 = 40 V

ii) |VL| = |ANDXL| = 10 × 8 = 80 V

iii) |VC| = |ANDXC| = 10 × 11 = 110 V

iv) |VRLC| = |AND| = 10 × 5 = 50 V

Published
Categorized as Life hack